Breeding of ‘Manten-Kirari’, a non-bitter and trace-rutinosidase variety in Tartary buckwheat, and de novo sequencing of transcriptome and mass discovery of SNPs

Tatsuro SUZUKI1*, Toshikazu MORISHITA2, Yuji MUKASA2, Sang Un PARK3, Sun-Ju KIM1, Sun-Hee WOO4, Shigenobu TAKIGAWA2, Satoshi YOKOTA2, Koji ISHIGURO5 and Takahiro NODA2

1 National Agriculture and Food Research Organization (NARO) Hokkaido Agricultural Research Center, Hitsuji-gaoka, Toyohira, Sapporo, Hokkaido 062-8555, Japan.
2 NARO Hokkaido Agricultural Research Center, Memuro Upland Farming Research Station, Shinsei, Memuro, Kusai-Gun, Hokkaido 082-0081, Japan. Faculty. University. Address. Country
3 Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, 79 Daehangno, Yuseong-Gu, 5 Daejeon, 305-754, Korea
4 Dept of Crop Science, College of Agricultural, Life & Environmental Sciences Chungbuk National University, 410, Seongbong-ro, Gaeshin-dong, Cheongju city, 361-763 Chungbuk, Korea
* Corresponding author e-mail: tsuzu@affrc.go.jp

Key words: Tartary buckwheat, breeding, bitterness, rutinosidase, cross breeding, next-generation sequencing

ABSTRACT
‘Manten-Kirari’, a new Tartary buckwheat (Fagopyrum tataricum) variety has developed. In vitro rutinosidase activities of ‘Manten-Kirari’ was three orders magnitude less than that of rutinosidase-normal variety such as ‘Hokkai T8’. In ‘Hokkai T8’, rutin in dough was completely hydrolyzed within one hour after addition of water. On the other hand, most part of rutin was present without hydrolysis in ‘Manten-Kirari’ dough. In ‘Hokkai T8’ flour, most panellists feel strong bitterness whereas no panellists feel bitterness in ‘Manten-Kirari’. From these results, ‘Manten-Kirari’ would be promising as material for rutin-rich/non-bitterness foods. To develop SNPs-based DNA marker for variety discrimination, we performed de novo sequencing of transcriptome in seedling including roots using GS-FLX+ Titanium and HiSeq 200. Using these data, we tried mass discovery of SNPs between ‘Manten-Kirari’ and ‘Hokkai T10’, an EMS treated mutant of ‘Hokkai T8’. Although 81 % of SNPs detected by ‘VarScan’ software was excluded as false-positives, we employed residual 19 % as ‘tentative SNPs’.

INTRODUCTION
Rutin, a kind of flavonoid, exhibits beneficial effects on human health (Wieslander et al., 2011). Tartary buckwheat is known to be a useful food because it contained about 100 times higher amount of rutin in its seed than that of common buckwheat. However, Tartary buckwheat seed also contains huge amount of rutinosidase activity than common buckwheat (Yasuda et al. 1994; Suzuki et al., 2002). The rutinosidase activity in Tartary buckwheat seeds was sufficient to hydrolyze rutin in the flour within a few minutes after the addition of water. Therefore, variety with trace-rutinosidase activity has been required. In addition, Tartary buckwheat is traditionally known as ‘bitter buckwheat’. The foods containing Tartary buckwheat flour sometimes have strong bitterness. Therefore, it has not widely spread into the diet in Japan. From these backgrounds, we developed a new Tartary buckwheat variety ‘Manten-Kirari’. Here, we show its breeding procedure and traits of the variety about bitterness and rutin hydrolysis. In buckwheat, de novo sequencing using next generation sequencing (NGS) about florals (Vinogradov et al., 2011, Yasui et al., 2012) and developing seeds (Chen et al., 2012) have been reported. However, to date, de novo sequencing in seedling including root have not yet reported. Therefore, we tried to obtain seedling transcriptome including root in Tartary buckwheat. We also tried to discover variant such as SNPs using transcriptomic data got from Illumina HiSeq 2000.

MATERIALS ANS METHODS
To measure in vitro rutinosidase activity and rutinosidase isoymes, we employed HPLC and in-gel detection method (Suzuki et al., 2002, 2004). Brief procedure of ‘Manten-Kirari’ development is
shown in Fig. 1. To investigate bitterness of flour, a sensory analysis was performed. Brief procedure and experimental design of NGS analysis are summarized in Fig. 2.

RESULTS AND DISCUSSION
We could not detect rutinosidase isoymes in in-gel detection method both in ‘Manten-Kirari’ and its pod parent ‘f3g162’ (Fig. 3). In vitro rutinosidase activities of ‘Manten-Kirari’ and ‘f3g162’ were three orders magnitude less than that of rutinosidase-normal variety such as ‘Hokkai T8’; this rutinosidase-trace characteristic was dominated by a single recessive gene (data not shown). In ‘Hokkai T8’, rutin in dough was completely hydrolyzed within a several minutes whereas most part of rutin was present without hydrolysis in ‘Manten-Kirari’ dough (Fig. 4). In addition, ‘Manten-Kirari’ flour had no bitterness (Fig.3). Hand-made buckwheat noodle made from ‘Manten-Kirari’ flour also had no bitterness whereas ‘Hokkai T8’ had strong bitterness (data not shown). From these results, ‘Manten-Kirari’ would be promising as a material for rutin-rich/ non-bitterness foods. We obtained 256Mb sequence in GS-FLX+ Titanium sequences. After MIRA assembler analysis, we obtained 11,358 large contigs (1 kb<, 7.1 reads<). In Illumina HiSeq 200 sequencing, we obtained 17.67Gb data. Mean Q of these sequencing were above 35. We considered that sequencings were performed appropriately. Generally, ‘VarScan detected SNPs’ were present in both ‘Hokkai T10’ and ‘Manten-Kirari’ at the same nucleotide position (Fig.5). Therefore, we exclude these SNPs as false-positive SNPs (by this analysis, we excluded about 81 % of ‘VarScan detected SNPs’, and employed residual 19 % as ‘tentative SNPs’).

REFERENCES


